
Data Management
Pandas Library for Data Manipulation

Presented by:
Sean Campbell
Software Engineer
Computer Science Adjunct Instructor, Iona University

Link to these slides

https://tinyurl.com/2k6u9d38

https://tinyurl.com/2k6u9d38

Outline

1. Intro and Background
2. Review: Setting up Jupyter notebook
3. Finding data sources
4. Loading data
5. Summarizing and aggregating data
6. Cleaning and filtering data

Intro and Background

1. Intro and Background

2. Review: Setting up Jupyter notebook

3. Finding data sources

4. Loading data

5. Summarizing and aggregating data

6. Cleaning and filtering data

● Graduated Iona in 2016, with a BS in Computer Science
● Adjunct professor of Computer Science here at Iona
● Software engineer at Google for ~5 years

○ Focused on internal infrastructure, but did a number of data-focused side projects
● Software engineer at Devron, a startup focused on data privacy
● Software engineer at Gaiascope, a startup focused on decarbonizing the

electric grid

My Background

● What are you hoping to get out of this workshop?

● How are you hoping to apply what you learn today in your life?

● What is your background in Python?

Intro

● Python library for data analysis and manipulation
● Think “Excel for Python”
● Handles structured (table-like) data
● Stores data in-memory, may not be best tool for

very large datasets
● Building blocks

○ DataFrame: table-like data
○ Series: column, has data type

What is Pandas?

Why Pandas?

● Easy-to-use compared to many alternatives
● More powerful and flexible than Excel
● Handles larger datasets than Excel
● Automate workflows you do a lot

Review: Setting up Jupyter notebook

1. Intro and Background

2. Review: Setting up Jupyter notebook

3. Finding data sources

4. Loading data

5. Summarizing and aggregating data

6. Cleaning and filtering data

Setting up Jupyter notebook

● You can set up a notebook on your own computer
● For this workshop, I’ll use Google Colab:

https://colab.research.google.com
○ No setup required – runs in a Google data center with a bunch of common Python libraries

pre-installed
○ Need a Google account to run code
○ Good especially if you don’t need lots of processing power or non-standard libraries

● Jupyter notebook for this workshop:
https://colab.research.google.com/drive/1HocRL5iCdTZ7PVQnW5FRACr
mUrfl-pHF?usp=sharing

https://colab.research.google.com/
https://colab.research.google.com/drive/1HocRL5iCdTZ7PVQnW5FRACrmUrfl-pHF?usp=sharing
https://colab.research.google.com/drive/1HocRL5iCdTZ7PVQnW5FRACrmUrfl-pHF?usp=sharing

1. Intro and Background

2. Review: Setting up Jupyter notebook

3. Finding data sources

4. Loading data

5. Summarizing and aggregating data

6. Cleaning and filtering data

Finding data sources

Data sources

Source URL

Kaggle https://kaggle.com/

Google Datasets https://datasetsearch.research.google.com/

Data Commons https://datacommons.org/

New York City Open Data https://opendata.cityofnewyork.us/

United Nations Data https://data.un.org/

https://kaggle.com/
https://datasetsearch.research.google.com/
https://datacommons.org/
https://opendata.cityofnewyork.us/
https://data.un.org/

Datasets we’ll use today

Data URL

Greenhouse Gas Emissions https://www.kaggle.com/datasets/unitednations/international-greenhous
e-gas-emissions

NYT Best Restaurants https://www.kaggle.com/datasets/rummagelabs/nytimes-best-restaurant
s-2024

NYC Job Postings https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav
-sd4t/about_data

https://www.kaggle.com/datasets/unitednations/international-greenhouse-gas-emissions
https://www.kaggle.com/datasets/unitednations/international-greenhouse-gas-emissions
https://www.kaggle.com/datasets/rummagelabs/nytimes-best-restaurants-2024
https://www.kaggle.com/datasets/rummagelabs/nytimes-best-restaurants-2024
https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav-sd4t/about_data
https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav-sd4t/about_data

Loading data

1. Intro and Background

2. Review: Setting up Jupyter notebook

3. Finding data sources

4. Loading data

5. Summarizing and aggregating data

6. Cleaning and filtering data

Loading data

Documentation: https://pandas.pydata.org/docs/reference/io.html

import pandas as pd

Read CSV file
df = pd.read_csv(‘<path to csv file>’)

Read Excel file
df = pd.read_excel(‘<path to Excel file>’)

And others (SQL, JSON), but we won’t get to them

https://pandas.pydata.org/docs/reference/io.html

1. Intro and Background

2. Review: Setting up Jupyter notebook

3. Finding data sources

4. Loading data

5. Summarizing and aggregating data

6. Cleaning and filtering data

Summarizing and aggregating data

df.columns # List columns in the data set
df.head() # Look at first few rows
df.tail() # Look at last few rows
df.info() # Information about columns, data types, etc.
df.describe() # Summary statistics for each column

Summarizing data

Selecting rows and columns

Single column
df[‘col’]

Multiple columns
df[[‘col1’, ‘col2’]]

Single row
df.iloc[0]

Multiple rows
df[0:10]

Summarizing columns

df[‘col’].min() # Minimum value in column
df[‘col’].max() # Maximum value in column
df[‘col’].mean() # Mean value in column
df[‘col’].count() # Count of non-NA values in column
df[‘col’].value_counts() # Unique values and their counts
df[‘col’].unique() # Unique values in column
df[‘col’].idxmin() # Index of minimum value in column
df[‘col’].idxmax() # Index of maximum value in column

df.groupby([‘col’]).min() # Find min for each value in `col`
df.sort_values([‘col’]) # Sort dataframe by column

Cleaning and filtering data

1. Intro and Background

2. Review: Setting up Jupyter notebook

3. Finding data sources

4. Loading data

5. Summarizing and aggregating data

6. Cleaning and filtering data

df[df[‘col1’] == ‘some value’] # Equal
df[df[‘col1’] != ‘some value’] # Not equal
df[df[‘col2’] < 100] # Less than
df[df[‘col2’] > 100] # Greater
df[(df[‘col2’] > 100) & (df[‘col2’] < 200)] # AND
df[(df[‘col2’] < 100) | (df[‘col2’] > 200)] # OR
df[df[‘col1’].isna()] # Missing values

Filtering data

Cleaning data

df.dropna() # Drop missing values
df.fillna(‘value’) # Replace missing values with a given value
df[df.duplicated()] # Show duplicates
df.clip(lower=0, upper=100) # Confine values to range
df.apply(<some function>) # Apply function over values
df[‘col’].astype(<type>) # Change data type of column

NYC Job Postings Dataset

● What questions do you want to ask of it?
○ Highest and lowest salaries posted

https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav-sd4t/about_data

https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav-sd4t/about_data

A Note on ChatGPT (and other AIs)

● It works pretty well for programming.
● It can help you write more advanced queries, and can explain what it’s

doing.
● At least for now, it needs to be supervised.

○ It’s not a substitute for knowing the data.
○ Not a substitute for knowing what questions to ask.
○ It makes mistakes, assumptions, etc. And you have to catch them!
○ Depending on sensitivity of the data and organization policy, may or may not be able to use

it.

Takeaways

● You can think of Pandas as the “Excel of Python”.
● Works well with data in a tabular format.
● Put in some time to understand your data. Otherwise what you think it’s

telling you might not really be what it’s telling you.
● Current iterations of AI chatbots are a great tool to help with analyzing data

and to learn more about how to use Pandas and other analysis tools.
● Ask a question. Code a solution. Double check your assumptions. Iterate.

NYC Posting Dataset

● Min, max salary
● Convert hourly to annual
● Average salary range per level
● Postings per year

Greenhouse Gas Emissions Dataset

● Min, max salary
● Convert hourly to annual
● Average salary range per level
● Postings per year

Synthetic Dataset

prices_df = pd.DataFrame({
"product": ["apple", "banana", "yogurt", "apple", "apple",

"yogurt"],
"price": [1.0, 0.5, 7.0, 0.9, 0.9, 5.0],
"store": ["Stop & Shop", "Walmart", "Stop & Shop",

"Walmart", "Amazon", "Amazon"]
})

