Data Management

Pandas Library for Data Manipulation

Presented by:
Sean Campbell

Software Engineer
Computer Science Adjunct Instructor, lona University

Link to these slides

https://tinyurl.com/2k6u9d38

https://tinyurl.com/2k6u9d38

Outline

1.
2.
3.
4.
d.
6.

Intro and Background

Review: Setting up Jupyter notebook
Finding data sources

Loading data

Summarizing and aggregating data
Cleaning and filtering data

Intro and Background

Review: Setting up Jupyter notebook

Finding data sources

Loading data

Summarizing and aggregating data

Cleaning and filtering data

Intro and Background

My Background

e Graduated lonain 2016, with a BS in Computer Science
e Adjunct professor of Computer Science here at lona

e Software engineer at Google for ~5 years
o Focused on internal infrastructure, but did a number of data-focused side projects

e Software engineer at Devron, a startup focused on data privacy
e Software engineer at Gaiascope, a startup focused on decarbonizing the
electric grid

Intro

e What are you hoping to get out of this workshop?

e How are you hoping to apply what you learn today in your life?

e What is your background in Python?

What is Pandas?

Python library for data analysis and manipulation
Think “Excel for Python”

Handles structured (table-like) data

Stores data in-memory, may not be best tool for
very large datasets

e Building blocks

o DataFrame: table-like data
o Series: column, has data type

Why Pandas?

Easy-to-use compared to many alternatives
More powerful and flexible than Excel
Handles larger datasets than Excel
Automate workflows you do a lot

Intro and Background

Review: Setting up Jupyter notebook

Finding data sources

Loading data

Summarizing and aggregating data

Cleaning and filtering data

Review: Setting up Jupyter notebook

Setting up Jupyter notebook

e You can set up a notebook on your own computer
e For this workshop, I'll use Google Colab:

https://colab.research.google.com

o No setup required — runs in a Google data center with a bunch of common Python libraries
pre-installed

o Need a Google account to run code
o Good especially if you don't need lots of processing power or non-standard libraries

e Jupyter notebook for this workshop:

https://colab.research.google.com/drive/1HocRL5iCdTZ7PVQnW5FRACr
mUrfl-pHF?usp=sharing

https://colab.research.google.com/
https://colab.research.google.com/drive/1HocRL5iCdTZ7PVQnW5FRACrmUrfl-pHF?usp=sharing
https://colab.research.google.com/drive/1HocRL5iCdTZ7PVQnW5FRACrmUrfl-pHF?usp=sharing

Intro and Background

Review: Setting up Jupyter notebook

Finding data sources

Loading data

Summarizing and aggregating data

Cleaning and filtering data

Finding data sources

Data sources

Source

Kaggle

URL

https://kaggle.com/

Google Datasets

https://datasetsearch.research.google.com/

Data Commons

https://datacommons.org/

New York City Open Data

https://opendata.cityofnewyork.us/

United Nations Data

https://data.un.org/

https://kaggle.com/
https://datasetsearch.research.google.com/
https://datacommons.org/
https://opendata.cityofnewyork.us/
https://data.un.org/

Datasets we'll use today

Data

Greenhouse Gas Emissions

URL

https://www.kaggle.com/datasets/unitednations/international-greenhous
€-gas-emissions

NYT Best Restaurants

https://www.kaggle.com/datasets/rummagelabs/nytimes-best-restaurant
s-2024

NYC Job Postings

https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav
-sd4t/about data

https://www.kaggle.com/datasets/unitednations/international-greenhouse-gas-emissions
https://www.kaggle.com/datasets/unitednations/international-greenhouse-gas-emissions
https://www.kaggle.com/datasets/rummagelabs/nytimes-best-restaurants-2024
https://www.kaggle.com/datasets/rummagelabs/nytimes-best-restaurants-2024
https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav-sd4t/about_data
https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav-sd4t/about_data

Intro and Background

Review: Setting up Jupyter notebook

Finding data sources

Loading data

Summarizing and aggregating data

Cleaning and filtering data

Loading data

Loading data

Documentation: https://pandas.pydata.org/docs/reference/io.html

import pandas as pd

Read CSV file
df = pd.read csv(‘<path to csv file>')

Read Excel file
df = pd.read excel (‘<path to Excel file>')

And others (SQL, JSON), but we won’t get to them

https://pandas.pydata.org/docs/reference/io.html

Intro and Background

Review: Setting up Jupyter notebook

Finding data sources

Loading data

Summarizing and aggregating data

Cleaning and filtering data

Summarizing and aggregating data

Summarizing data

df.
.head ()
.tail ()
df.
df.

df
df

columns

info ()
describe ()

H= H FH H

List columns in the data set

Look at first few rows

Look at last few rows

Information about columns, data types,
Summary statistics for each column

etc.

Selecting rows and columns

Single column
df [‘col’]

Multiple columns
df [[‘coll’, 1‘col2’]]

Single row
df.iloc[0]

Multiple rows
df [0:10]

Summarizing columns

df [‘col’] .min () # Minimum value i1n column

df [‘col’] .max () # Maximum value in column

df[‘col’] .mean () # Mean value in column

df [‘col’] .count () # Count of non-NA values in column
df [‘col’].value counts() # Unique values and their counts
df [‘col’] .unique () # Unique values in column

df [Ycol’] .idxmin () # Index of minimum value in column
df [‘col’].idxmax () # Index of maximum value in column
df .groupby ([‘col’]) .min() # Find min for each value in "col’

df.sort values([‘'col’]) # Sort dataframe by column

Intro and Background

Review: Setting up Jupyter notebook

Finding data sources

Loading data

Summarizing and aggregating data

Cleaning and filtering data

Cleaning and filtering data

Outlier Detection and Treatment

Encoding Categorical Variables

® Handling Skewed Data and Creating
New Features

Filtering data

df [df[‘coll’] == ‘some value’] # Equal

df [df[‘coll’] !'= ‘some value'’] # Not equal

df [df[‘col2’] < 100] # Less than

df [df[‘col2’] > 100] # Greater

df [(df[‘col2’] > 100) & (df[‘col2’] < 200)] # AND

df [(df[‘col2’] < 100) | (df[‘col2’] > 200)] # OR

df [df[‘coll’] .isna ()] # Missing values

Cleaning data

df .dropna () # Drop missing values

df.fillna(‘'value’) # Replace missing values with a given wvalue
df [df .duplicated()] # Show duplicates

df.clip(lower=0, upper=100) # Confine wvalues to range

df.apply (<some function>) # Apply function over values

df [‘col’] .astype (<type>) # Change data type of column

NYC Job Postings Dataset

e What questions do you want to ask of it?
o Highest and lowest salaries posted

https://data.cityofnewyork.us/City-Government/Jobs-NY C-Postings/kpav-sd4t/about_data

https://data.cityofnewyork.us/City-Government/Jobs-NYC-Postings/kpav-sd4t/about_data

A Note on ChatGPT (and other Als)

e It works pretty well for programming.

e It can help you write more advanced queries, and can explain what it's
doing.
e At least for now, it needs to be supervised.
o It's not a substitute for knowing the data.
o Not a substitute for knowing what questions to ask.
o It makes mistakes, assumptions, etc. And you have to catch them!
o Depending on sensitivity of the data and organization policy, may or may not be able to use
it.

IELCEVWENTS

e You can think of Pandas as the “Excel of Python".

e Works well with data in a tabular format.

e Putin some time to understand your data. Otherwise what you think it's
telling you might not really be what it’s telling you.

e Current iterations of Al chatbots are a great tool to help with analyzing data
and to learn more about how to use Pandas and other analysis tools.

e Ask a question. Code a solution. Double check your assumptions. Iterate.

NYC Posting Dataset

Min, max salary

Convert hourly to annual
Average salary range per level
Postings per year

Greenhouse Gas Emissions Dataset

Min, max salary

Convert hourly to annual
Average salary range per level
Postings per year

Synthetic Dataset

prices df = pd.DataFrame ({

"product": ["apple", "banana", "yogurt", "apple", "apple",
"yogurt"],

"price": [1.0, O.5, 7.0, 0.9, 0.9, 5.0],

"store": ["Stop & Shop", "Walmart", "Stop & Shop",

"Walmart", "Amazon", "Amazon"]

})

